3D Printing Materials

Rubber-Like

At a glance

Process

Polyjet

Lead Time

24 hrs (rush)2 days (standard)

Colors

Black

Resolution

0.16 mm

Price

$$$

Applications

Simulating overmolds, soft-touch finishing, non-slip surfaces, watertight/ dust-proof seals

About the material

Rubber-Like is one of the unique printing capabilities of PolyJet machines because of the PhotoPolymer resin used in this style of printing. The prints will give you full flexibility of parts and allow you to simulate rubbers between Shore 27A and Shore 95A. This material, however, will not give you the same elastomeric properties you are used to in rubbers.

Rubber-Like is also great for testing overmolds, as the PolyJet machines can easily print one body in rubber and another in rubber without any seams.

Material Properties

Tensile Strength

0.8 MPa (115 PSI)

Elongation at Break

170%

Material Finish

The hardness of our rubber material can be easily configured to print in anything between Shore 27A and Shore 95A. The finish is smooth with a slight glossy surface. While the print is high resolution, the rubber material does tend to show off defects much easier, so expect some visible build lines.

Design Recommendations

Min Wall Thickness

1 mm min

Min Clearance + Gaps for Fit

0.2 mm offset on each wall is the recommended gap for enclosures.

Max Part Size (xyz)

610 x 813 x 813 mm
24 x 32 x 32 in

Tolerance

+/- 0.004” or +/- 0.001” per inch, whichever is greater

Internal Cavities

Internal cavities are highly discouraged with RubberLike due to the water-based support material that will swell and change the geometry overtime if left inside. Note that support material that has no direct line of sight inside a cavity cannot be cleaned out.

Text Guidelines

Text should be embossed by at least 1.0 mm to stay visible after printing. Text should also be at least 1.5 mm thick in all areas.

YOU MIGHT ALSO BE INTERESTED IN

6 Industries Being Transformed by 3D Printing

3D printing has grown from $4.4 billion in 2013 to an industry bringing in a projected $21 billion in 2021. This major growth is due to the growing number of applications of this technology across industries from printing food to building colonies on Mars. Other more practical applications for 3D printing include innovations in the […]

Learn More

A Guide to Prototyping Materials for Medical Devices

“Medical device” is a broad umbrella term that covers a huge variety of apparatus and equipment, such as Band-Aids, dental floss, blood pressure cuffs, defibrillators, MRI scanners, and much, much more. It’s probably no surprise that medical device design constitutes a major segment of the field of mechanical engineering, especially in the U.S., which is […]

Learn More