our digital manufacturing ecosystem
Digital Platform
Global Manufacturing Network
People on the ground
Quality Assurance
features
Instant Pricing
Manufacturability Feedback
Fulfillment Transparency
3D Printing
Processes Available
CNC Machining
Finishing Options
Injection Molding
Urethane Casting
3D Printing Materials
Plastics
Metals
Urethane Casting Materials
Digital Manufacturing Resources
Resource Center
Content Categories
Learn about fictiv
Help Center
Topics
featured reads
DFM for CNC Machining
2020 State of Manufacturing Report
Introducing Fictiv Radical Transparency: An Industry-First Solution for Production Visibility
All articles from the author
Article
In today’s world, products are getting increasingly complex, with downward pressure on overall pricing. This has led to an inevitable increase in the geometric complexity of mechanical components. While this has allowed components to perform multiple functions, it has led to complex load transfers and possible concentrations of stresses. A stress concentration is defined as […]
Threaded connections, such as bolts and nuts, are used in a wide variety of applications, ranging from plastic toys to massive bridges. The one similarity that ties them together is that these connections need to stay together when we want them to, but also come apart when needed. For example, the valve covers on an […]
Products that are subject to a torsional load often require analysis similar to what we use for bending stiffness. The main differences are the specific material property to be used (Shear Modulus of Rigidity) and the polar moment of inertia (which is very similar to the area moment of inertia used in bending). If we […]
In the world of mechanical product design, engineers and designers complete what is known as a tolerance analysis or tolerance stack up analysis on an assembly as they prepare to send the components out for manufacturing. This is done to ensure when you order parts, they are manufactured to dimensions that guarantee the components within an assembly […]
In a world of ever-increasing electronics, our lives are continuously impacted by devices that incorporate some sort of heat-generating circuitry. When it comes to electronics that dissipate power in the form of heat during normal operation, it is often necessary to manage this heat, to ensure the components don’t exceed their maximum allowable temperatures. One […]
In the product design world, it’s common to use a tool called a Failure Modes and Effects Analysis (FMEA) to improve a design or process. FMEAs are commonly separated into two different categories, depending on their application: A Design FMEA (D-FMEA) is used in product design to identify possible design weaknesses and failure modes. A […]
In my last article, we discussed methods of improving part stiffness through geometric changes and why that is an important tool. Here in Part 2 of the “Designing for Stiffness” series, we’ll be looking at changing part stiffness through material properties. We’ll use many of the same formulas, but we’ll focus on the properties we […]
Designing products for load bearing applications can pose a multitude of challenges, so it’s important for a designer to have a “toolbox” of techniques that improve design quality. Designing for stiffness through geometric controls is a top tool in that box. Even the simplest designs can be sensitive to part stiffness: For example, if a […]
Fictiv’s guide to fasteners for 3D printed parts includes an overview of threaded inserts, self threading screws, designing threads into your model, captured hex nuts, and cutting threads with a tap. Today, we’re going to dive in a bit deeper with a more comprehensive guide to all the options available for fastening plastic assemblies, including: […]
When designing components that will be made of plastic, it’s often necessary to add ribs and gussets to improve the stiffness and strength of load bearing features. This reduces material volume and print time for 3D printed parts, compared to the time it would take to make these features out of solid structures. That’s because print […]