3D Printing Materials

PA 12 Glass Beads

At a glance

Process

HP® Multi Jet Fusion

Production Time

As fast as 5 days

Colors

Grey, black

Resolution

0.08 mm

Price

$$$

Applications

End-use production parts, Functional prototypes,

About the material

PA 12 Glass Beads is a variation of the Nylon PA 12 material for HP Multi Jet Fusion. With 40% glass beads fill, parts made with PA 12 Glass Beads will have all the fine grain, high density and low porosity qualities of typical Nylon 12, but with a higher degree of stiffness and dimensional stability. Additionally, it’s less prone to warpage so it’s a great option for large or flat parts.

Material Properties

Process

MJF

Tensile Strength

30 MPa (4351 PSI)

Elongation at Break

10%

Modulus of Elasticity

2500 MPa (362594 PSI)

Flexural Strength

57.5 MPa (8340 PSI)

Material Finish

The texture of this material is slightly smoother than SLS Nylon, but still similar to a very fine grit sandpaper. Un-dyed MJF Nylon is grey, which may vary in shades across the same part of a surface. When dyed black, this material has a matte appearance.

Design Recommendations

Max Part Size [x, y, z]

380 x 284 x 380 mm

Min Wall Thickness

1.0 mm for production
1.5 mm for consistency (for measurement and mechanical applications)

Min Clearance + Gaps for Fit

0.2 mm clearance between features, we recommend 0.3 mm to ensure good fit

Internal Cavities

Be sure to have a clearance to remove the support powder!

Threads & Inserts

Minimum 0.1 mm clearance is required for printed threads.

Text Guidelines

Raised features: 0.6 mm minimum
Recessed features: 0.5 mm minimum

YOU MIGHT ALSO BE INTERESTED IN

A Guide to Prototyping Materials for Medical Devices

“Medical device” is a broad umbrella term that covers a huge variety of apparatus and equipment, such as Band-Aids, dental floss, blood pressure cuffs, defibrillators, MRI scanners, and much, much more. It’s probably no surprise that medical device design constitutes a major segment of the field of mechanical engineering, especially in the U.S., which is […]

Learn More

How to Read Material Data Sheets

To most people, plastics might seem all the same, but to an engineer, plastics come in families, have cousin materials, and have other materials that are as different as cats are from dogs. Of course, our clients expect us to worry about these details, and as nerds, the minute differences between materials are a source […]

Learn More