CNC Machining Materials

Stainless Steel

At a glance

Processes

CNC Mill
CNC Lathe

Lead Time

As fast as 2 days

Finishing Options

Black Oxide, Electropolishing, ENP, Media Blasting, Nickel Plating, Passivation, Powder Coating, Tumble Polishing, Zinc Plating

Tolerance

With drawing: as low as +/- 0.005 mm
No drawing: ISO 2768 medium

Price

$$$

Applications

Industrial applications, fittings, fasteners, cookware, medical devices

Alloys

303, 304L, 316L, 410, 416, 440C, 17-4PH, Nitronic 60

About the material

Stainless steel is highly resistant to corrosion and rust, making it suitable for situations where a part may be exposed to the elements for a long period of time. Stainless steel is also fairly malleable and ductile. Fictiv offers multiple stainless steel alloys, including a food-safe variety.

The 300 series family (303, 304, etc.) are austenitic stainless steels (after their crystalline structure) and are the most widely produced grades worldwide. Austenitic stainless grades are known for their high corrosion resistance and high strength across wide temperature ranges. They are not heat-treatable except by cold working, and are generally non-magnetic.

400 series stainless steels are the martensitic family and not as common as austenitic grades. Martensitic steels are extremely strong and tough due to higher carbon content, but more susceptible to corrosion in certain environments.  They can be heat-treated to greatly increase their hardness and are magnetic.

17-4 PH Stainless Steel is a high-strength, highly corrosion-resistant material that maintains its durability up to 1100°F. The PH in its name stands for precipitation-hardened, a type of treatment it undergoes to increase yield strength. It is magnetic and heat treatable to a hardness of approximately Rockwell C50.

Nitronic 60 is an excellent all-purpose material with superior wear and corrosion resistance. It has a yield strength nearly double that of SS 304 and SS 316, as well as superior oxidation resistance. Popular applications include fasteners, valve stems, seats, pins, bushings, bearings, shafts and rings.

Material Properties

303 Stainless Steel

Yield Strength (tensile)

35,000 psi

Elongation at Break

42.5%

Hardness

Rockwell B95

Density

0.29 lbs / cu. in.

Maximum Temp

2550° F

McMaster Part Number

1243T15

304L Stainless Steel

Yield Strength (tensile)

30,000 psi

Elongation at Break

50%

Hardness

Rockwell B80 (medium)

Density

0.29 lbs / cu. in.

Maximum Temp

1500° F

McMaster Part Number

8983K213

316L Stainless Steel

Yield Strength (tensile)

30,000 psi

Elongation at Break

39%

Hardness

Rockwell B95

Density

0.29 lbs / cu. in.

Maximum Temp

1500° F

McMaster Part Number

9195K48

410 Stainless Steel

Yield Strength (tensile)

65,000 psi

Elongation at Break

30%

Hardness

Rockwell B90

Density

0.28 lbs / cu. in.

Maximum Temp

1200° F

McMaster Part Number

1316T121

416 Stainless Steel

Yield Strength (tensile)

75,000 psi

Elongation at Break

22.5%

Hardness

Rockwell B80

Density

0.28 lbs / cu. in.

Maximum Temp

1200° F

McMaster Part Number

1323T14

440C Stainless Steel

Yield Strength (tensile)

110,000 psi

Elongation at Break

8%

Hardness

Rockwell C20

Density

0.28 lbs / cu. in.

Maximum Temp

800° F

McMaster Part Number

88585K224

17-4PH Stainless Steel

Yield Strength (tensile)

160,000 psi

Elongation at Break

7%

Hardness

Rockwell C35

Density

0.28 lbs./cu. in.

Maximum Temp

1100°F

McMaster Part Number

6625K4

Nitronic 60

Yield Strength (tensile)

50,000 psi

Elongation at Break

35%

Hardness

Rockwell B85

Density

0.28 lbs./cu. in.

Maximum Temp

1800°F

McMaster Part Number

9583k21

Material Finish

The finish of stainless steel varies greatly depending on surface roughness, but it’s generally characterized as being more shiny than unfinished aluminum alloys, and slightly darker and more silver in color.

Stainless steel can also be media-blasted, sanded, hand-polished, and powder coated to achieve a multitude of surface finishes.

Design Recommendations

Min Wall Thickness

0.5 mm

Min End Mill Size

0.8 mm (0.03 in)

Min Drill Size

0.5 mm (0.02 in)

Max Part Size

1200 x 500 x 152 mm [x,y,z] (mill)
152 x 394 mm [d,h] (lathe)

Undercuts

Square profile, full radius, dovetail profiles

Radii : Depth

Depth must not exceed 12x drill bit diameter.
For end mills, depth must not exceed 10x tool diameter.

Cost Saving Tip

To reduce costs, limit the number of part setups, the number of inspection dimensions or tight tolerances, and deep pockets with small radii.

YOU MIGHT ALSO BE INTERESTED IN

Hebi Robotics

Learn how HEBI Robotics streamlined their supply chain with Fictiv, to increase speed and agility.

Learn More

23 New Materials Now Available on the Fictiv Platform

Our aim at Fictiv is to give customers access to a wide range of manufacturing choices through a single streamlined destination, for maximum speed and flexibility. We’re thrilled to share we’ve supercharged our portfolio of capabilities with 20 new CNC materials and 3 new 3D printing materials for Stereolithography (SLA) and Multi Jet Fusion (MJF) […]

Learn More