CNC Machining Materials

Copper

At a glance

Processes

CNC Mill
CNC Lathe

Lead Time

As fast as 3 days

Finishing Options

Available as-machined, media blasted, or hand-polished

Tolerance

ISO 2768

Price

$$$

Applications

Bus bars, gaskets, wire connectors, and other electrical applications

Alloys

101, 110

About the Material

101 and 110 copper alloys offer excellent thermal and electrical conductivity, which make them natural choices for bus bars, wire connectors, and other electrical applications. While 101 (also known as super-conductive copper) offers higher conductivity due to its purity (99.99% copper), 110 is generally easier to machine and thus more cost-effective.

Material Properties

110 Copper

Tensile Strength

42,000 psi (1/2 hard)

Elongation at Break

20%

Hardness

Rockwell F40

Density

0.322 lbs / cu. in.

Maximum Temp

500° F

101 Copper

Tensile Strength

37,000 psi (1/2 hard)

Elongation at Break

14%

Hardness

Rockwell F60

Density

0.323 lbs / cu. in.

Maximum Temp

500° F

Material Finish

Copper has a shiny reddish-orange finish, which varies slightly based on the surface finish method. Copper can be media-blasted and polished to achieve many different cosmetic surface finishes.

Design Recommendations

Min Wall Thickness

0.5 mm

Min End Mill Size

0.8 mm (0.03 in)

Min Drill Size

0.5 mm (0.02 in)

Max Part Size

1200 x 500 x 152 mm [x,y,z] (mill)
152 x 394 mm [d,h] (lathe)

Undercuts

Square profile, full radius, dovetail profiles

Radii : Depth

Depth must not exceed 12x drill bit diameter.
For end mills, depth must not exceed 10x tool diameter.

Cost Saving Tip

To reduce costs, limit the number of part setups, the number of inspection dimensions or tight tolerances, and deep pockets with small radii.

Copper FAQs

YOU MIGHT ALSO BE INTERESTED IN

US Machine Shops: How Tariffs and Recent Supply and Demand Trends Shape the Market

For U.S. machine shops, the last few years have been anything but steady, marked by an unpredictable mix of tailwinds and headwinds. Reshoring and record factory construction have boosted demand, while tariffs and cost inflation continue to tighten margins and blur forecasts. Here’s a clear-cut view of what’s gaining traction, what’s slowing, and how to […]

Learn More

Prototyping In-House vs Outsourcing: The ROI for Mechanical Engineering Teams

As product development cycles accelerate, engineering leaders face a recurring strategic question: How fast can we prototype—and where does it make financial sense to build? With premium compensation levels for mechanical engineers (especially with seniority and years of experience), the opportunity cost of hands-on prototyping has never been higher. When factoring in loaded labor rates, […]

Learn More