our digital manufacturing ecosystem
Digital Platform
Global Manufacturing Network
People on the ground
Quality Assurance
features
Instant Pricing
Manufacturability Feedback
Fulfillment Transparency
3D Printing
Processes Available
CNC Machining
Finishing Options
Injection Molding
Urethane Casting
3D Printing Materials
Plastics
Metals
Urethane Casting Materials
Digital Manufacturing Resources
Resource Center
Content Categories
Learn about fictiv
Help Center
Topics
featured reads
DFM for CNC Machining
2020 State of Manufacturing Report
Introducing Fictiv Radical Transparency: An Industry-First Solution for Production Visibility
3D Printing Services
Lifecycle
Lead Time
Resolution
Materials
SLS machines offer some of the largest build beds. The powder itself is relatively inexpensive comparable to the machining costs, so higher quantities of part can be cost efficient by fitting them on the same tray (reducing z-height decreases machine costs). After the powder is sintered, the parts must be allowed extra time to cool. Depending on the size of the parts, cooling time may take as long as printing time, hence the longer lead times (at least 1 day for production and 1 day for cooling). For the largest parts, printing can span several days, followed by more with cooling!
If parts are cooled too quickly, they become susceptible to shrinkage effects. The time required to cool also depends on how many parts are on the tray, and the heat transfer conditions in the cooling station as well as between different parts themselves.
Nylon
Max Part Size [x, y, z]
Gaps for Mating Parts
Tolerance
Min Wall Thickness
Cost Saving Tip
If using 3D printing for higher part quantity fabrication (20+), SLS will be the most cost effective additive manufacturing process.
Selective Laser Sintering uses high-powered lasers to sinter powdered material, binding it together to create a solid structure. It is often confused with another similar process called Selective Laser Melting (SLM), the difference being that it only sinters the powders together as opposed to achieving a full melt.
Parts are supported by unsintered powder in each layer, which remain spread across the build volume until each layer is fused together. Once complete, the part is removed from the remaining powder and cleaned by hand and using water/air jets.
While parts created using this technology can contain some metal, they are usually plastic composites that present a good strength to weight ratio and can be acquired relatively cheaply. For parts that must be structurally as sound as forged solid metal, DMLS is required. Still, the high level of accuracy, relatively cheap feedstock, and high temperatures achievable with SLS printing make it an incredibly useful technology with a broad range of applications ranging from architectural models to control surfaces of aircraft and surgical tools.
Learn More