3D Printing Services

Selective Laser Sintering

At a glance

Lifecycle

Functional testing, low to mid volume prototyping (10s - 100s)

Lead Time

3 days

Resolution

0.1 mm

Infill

100% (solid)

Materials

Machines

SLS machines offer some of the largest build beds. The powder itself is relatively inexpensive comparable to the machining costs, so higher quantities of part can be cost efficient by fitting them on the same tray (reducing z-height decreases machine costs). After the powder is sintered, the parts must be allowed extra time to cool. Depending on the size of the parts, cooling time may take as long as printing time, hence the longer lead times (at least 1 day for production and 1 day for cooling). For the largest parts, printing can span several days, followed by more with cooling!

If parts are cooled too quickly, they become susceptible to shrinkage effects. The time required to cool also depends on how many parts are on the tray, and the heat transfer conditions in the cooling station as well as between different parts themselves.

SLS Machines

EOSINT P390, P720 EOSINT P730, P760
Build Bed Size [x, y, z] 340 x 340 x 620 mm 700 x 380 x 586 mm
Materials Nylon Nylon
Value $250,000 $350,000
Consumables Material powder, build trays, cooling station, airjet/cleaning Material powder, build trays, cooling station, airjet/cleaning

3D Printing Materials

Nylon

Multi Jet Fusion (MJF) Nylon is a synthetic 3D printed polymer material that’s strong, durable, and flexible. MJF Nylon is typically considered more often for end-use parts and functional testing under higher loads. MJF Nylon is a cost-effective option for higher bridge production quantities because of the machine’s modular design and faster production speed.
Processes:
Selective Laser Sintering (SLS)
Multi Jet Fusion (MJF)
Colors:
(Selective Laser Sintering (SLS)) White, Black
(Multi Jet Fusion (MJF)) Grey, Black
Resolution:
(Selective Laser Sintering (SLS)) 0.1 mm
(Multi Jet Fusion (MJF)) 0.08mm
Infill:
(Selective Laser Sintering (SLS)) 100% (solid)
(Multi Jet Fusion (MJF))
Price:
(Selective Laser Sintering (SLS)) $$$
(Multi Jet Fusion (MJF)) $$$
MJF nylon thumbnail

Design Recommendations

Max Part Size [x, y, z]

340 x 340 x 600 mm (P390) or 700 x 380 x 560 mm (P760)

Gaps for Mating Parts

0.5 mm clearance between features

Tolerance

+/- (0.25 mm + 0.002mm/mm)

Min Wall Thickness

1.0 mm for production, 1.5 mm for consistent measurement or mechanical properties
  • For long, thin parts: use ribbing to mitigate warping risks.

Cost Saving Tip

If using 3D printing for higher part quantity fabrication (20+), SLS will be the most cost effective additive manufacturing process.

About the Process

Selective Laser Sintering uses high-powered lasers to sinter powdered material, binding it together to create a solid structure. It is often confused with another similar process called Selective Laser Melting (SLM), the difference being that it only sinters the powders together as opposed to achieving a full melt.

Parts are supported by unsintered powder in each layer, which remain spread across the build volume until each layer is fused together. Once complete, the part is removed from the remaining powder and cleaned by hand and using water/air jets.

While parts created using this technology can contain some metal, they are usually plastic composites that present a good strength to weight ratio and can be acquired relatively cheaply. For parts that must be structurally as sound as forged solid metal, DMLS is required. Still, the high level of accuracy, relatively cheap feedstock, and high temperatures achievable with SLS printing make it an incredibly useful technology with a broad range of applications ranging from architectural models to control surfaces of aircraft and surgical tools.

YOU MIGHT ALSO BE INTERESTED IN

Checklist: Know When You’re Ready to Go from 3D Printing to Injection Molding

It’s not always easy, but don’t make it harder than it needs to be. Moving from 3D printing to injection molding isn’t as simple as just using your computer-aided design (CAD) file with a different piece of equipment. Because 3D printing offers greater design freedom than injection molding, you may need to modify your CAD […]

Learn More

6 Industries Being Transformed by 3D Printing

3D printing has grown from $4.4 billion in 2013 to an industry bringing in a projected $21 billion in 2021. This major growth is due to the growing number of applications of this technology across industries from printing food to building colonies on Mars. Other more practical applications for 3D printing include innovations in the […]

Learn More